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Abstract—Phishing is a critical threat to Internet users. Al-
though an extensive ecosystem serves to protect users, phishing
websites are growing in sophistication, and they can slip past
the ecosystem’s detection systems—and subsequently cause real-
world damage—with the help of evasion techniques. Sophisti-
cated client-side evasion techniques, known as cloaking, leverage
JavaScript to enable complex interactions between potential
victims and the phishing website, and can thus be particularly
effective in slowing or entirely preventing automated mitigations.
Yet, neither the prevalence nor the impact of client-side cloaking
has been studied.

In this paper, we present CrawlPhish, a framework for
automatically detecting and categorizing client-side cloaking used
by known phishing websites. We deploy CrawlPhish over 14
months between 2018 and 2019 to collect and thoroughly analyze
a dataset of 112,005 phishing websites in the wild. By adapting
state-of-the-art static and dynamic code analysis, we find that
35,067 of these websites have 1,128 distinct implementations of
client-side cloaking techniques. Moreover, we find that attackers’
use of cloaking grew from 23.32% initially to 33.70% by the
end of our data collection period. Detection of cloaking by our
framework exhibited low false-positive and false-negative rates of
1.45% and 1.75%, respectively. We analyze the semantics of the
techniques we detected and propose a taxonomy of eight types
of evasion across three high-level categories: User Interaction,
Fingerprinting, and Bot Behavior.

Using 150 artificial phishing websites, we empirically show
that each category of evasion technique is effective in avoiding
browser-based phishing detection (a key ecosystem defense).
Additionally, through a user study, we verify that the techniques
generally do not discourage victim visits. Therefore, we propose
ways in which our methodology can be used to not only improve
the ecosystem’s ability to mitigate phishing websites with client-
side cloaking, but also continuously identify emerging cloaking
techniques as they are launched by attackers.

I. INTRODUCTION

Despite extensive research by the security community,
phishing attacks remain profitable to attackers and continue to
cause substantial damage not only to the victim users that they
target, but also the organizations they impersonate [27, 55]. In
recent years, phishing websites have taken the place of mal-
ware websites as the most prevalent web-based threat [22, 52].
Even though technical countermeasures effectively mitigate
web-based malware, phishing websites continue to grow in
sophistication and successfully slip past modern defenses [46].

In a cat-and-mouse game with the anti-phishing ecosystem,
sophisticated phishing websites implement evasion techniques

to delay or avoid detection by automated anti-phishing sys-
tems, which, in turn, maximizes the attackers’ return-on-
investment [43]. Such evasion—known as cloaking—typically
seeks to determine if a visitor to the website is a bot, and
shows benign content if so. The danger posed by successful
evasion is exacerbated by these websites’ efforts to steal more
than just usernames and passwords: today’s phishing attacks
seek to harvest victims’ full identities, which can cause wider
damage throughout the ecosystem and is more challenging to
effectively mitigate [54].

Thwarting phishers’ evasion efforts is, thus, an important
problem within the anti-phishing community, as timely de-
tection is the key to successful mitigation. Prior research has
characterized server-side cloaking techniques used by phishing
websites [30, 37, 44] and showed that they can defeat key
ecosystem defenses such as browser-based detection [43].
However, the nature and prevalence of advanced cloaking
techniques, such as those implemented on the client-side using
JavaScript, is poorly understood. Client-side cloaking can be
particularly dangerous because it enables the implementation
of complex interactions with potential victims.

By analyzing—at scale—the client-side source code of
known phishing websites in the wild, we can not only gain
an understanding of the evasion techniques used by phish-
ers, but also leverage this understanding to improve existing
phishing detection systems and guide the mitigations used
by the ecosystem. Unlike server-side code used by phishing
websites, client-side code can trivially be obtained through
web crawling. However, a key challenge in gaining further
insights from this data is the dynamic nature of JavaScript
code, which hampers automated analysis [32]. In this paper,
we overcome this challenge and evaluate client-side evasion
by developing CrawlPhish.

CrawlPhish is a robust framework that harvests the source
code of live, previously reported phishing websites in the
wild and automatically detects and categorizes the client-
side cloaking techniques used by these websites. By effi-
ciently adapting advanced program analysis techniques in-
spired by prior research of JavaScript malware [18, 32, 34, 36],
our framework can not only identify the semantics of these
cloaking techniques, but also track the evolution of code
written by specific phishing kit authors [16].

We use the CrawlPhish framework to perform a large-scale



evaluation of the landscape of client-side cloaking used by
phishing websites. In total, over a period of 14 months from
mid-2018 to mid-2019, we collected and thoroughly analyzed
112,005 phishing websites. We measured the prevalence of
client-side cloaking techniques within these websites and
discovered that 35,067 (31.3%) use such cloaking. Thereof,
we identified 1,128 groups of related implementations which
we believe stem from distinct threat actors. Moreover, we
observed that the percentage of phishing websites with client-
side cloaking grew from 23.32% in 2018 to 33.70% in 2019.

To understand why client-side cloaking is used so fre-
quently, we characterize the ways in which it functions, and we
define eight different types of evasion techniques in three high-
level categories: User Interaction, Fingerprinting, and Bot
Behavior. Respectively, the techniques within these categories
require human visitors to perform a task, profile the visitor
based on various attributes, or exploit technical differences
between browsers used by crawlers and real browsers.

We evaluated CrawlPhish and found that it could detect the
presence of cloaking with low false-positive (1.45%) and false-
negative (1.75%) rates, while requiring an average of 29.96
seconds to analyze each phishing website. Once CrawlPhish
has detected cloaking, it can then reliably categorize the
semantics of the cloaking technique by using both static and
dynamic code features.

Finally, to show that client-side cloaking poses a real-world
threat, we deploy 150 carefully-controlled artificial phishing
websites to empirically demonstrate that all three categories
of evasion can successfully bypass browser-based detection
by Google Chrome, Microsoft Edge, and other major web
browsers. We also demonstrate that these websites remain ac-
cessible to potential human victims. As a result, we disclosed
our findings to the aforementioned browser developers, who
are working to improve the timeliness of the detection of the
corresponding phishing websites.

Our analysis furthers the understanding of the nature of
sophisticated phishing websites. In addition, the CrawlPhish
framework can be deployed to continuously monitor trends
within complex evasion techniques while identifying new
types of techniques as they are introduced by attackers. Our
methodology can not only directly help address gaps in the
ecosystem’s detection of sophisticated phishing websites, but
can also aid in the development of attributes to improve exist-
ing anti-phishing mitigations such as browser-based detection.
Our contributions are thus as follows:

• A scalable, automated framework for evaluating client-
side evasion techniques used by phishing websites in
the wild, supported by a novel adaptation of multiple
JavaScript code analysis approaches.

• The first in-depth study of the nature and prevalence
of client-side evasion techniques used by sophisticated
phishing websites, and a taxonomy of these techniques
based on semantic categorization.

• Measurements indicating the increasing use of client-
side evasion techniques by phishers, and an empirical

Cloaking Type Attributes Examples

Server-side HTTP Request

Repeat Cloaking
IP Cloaking

User-agent Cloaking
Referrer Cloaking

Client-side Client-side Characteristics
Execution of JavaScript

Redirection
Cloaking

TABLE I: Summary of cloaking types from previous studies.

evaluation showing that these techniques represent a
threat to the current ecosystem.

• Methodology for improving the ability of ecosystem
anti-phishing defenses to detect highly evasive phishing
websites.

II. BACKGROUND

Over the past years, a myriad of techniques have been
implemented by the anti-phishing ecosystem to detect and
mitigate phishing attacks [44]. Analysis of phishing URLs [11,
12, 29, 33] and website content [10, 13, 62, 64, 67] has given
rise to ecosystem-level defenses such as e-mail spam filters,
malicious infrastructure detection, and URL blacklists.

Specifically, systems such as Google Safe Browsing [61]
and Microsoft SmartScreen [40] power the anti-phishing
backends that display prominent warnings across major web
browsers when phishing is detected. These warnings are pri-
marily blacklist-based: they rely on content-based detection.
Evasion techniques commonly used by phishing websites are
capable of bypassing or delaying such blacklisting [38, 43, 45].

A. Cloaking Techniques in Phishing

Attackers leverage cloaking techniques to evade detection
by anti-phishing systems: phishing websites with cloaking
display benign-looking content instead of the phishing page
whenever they suspect that a visit originates from security
infrastructure [44]. Cloaking techniques can be categorized
into two groups: server-side and client-side (Table I shows
examples of each type). Server-side cloaking techniques iden-
tify users via information in HTTP requests [59]. Client-side
cloaking is implemented through code that runs in the visitor’s
browser (JavaScript) to apply filters using attributes such as
cookies or mouse movement.

Existing anti-cloaking methodologies focus on bypassing
server-side cloaking by comparing the visual and textual
features of different versions of a crawled website retrieved
by sending multiple web requests with different configurations
(e.g., user agents or IP addresses) [25, 30, 59]. Client-side
cloaking techniques, however, are still poorly understood due
to challenges in automatically analyzing JavaScript code and
understanding its semantics. Moreover, neither the prevalence
nor impact of client-side cloaking has been investigated in the
context of phishing.

Figure 1 shows how client-side cloaking techniques are used
in phishing websites. Cloaking code embedded in the HTTP
response payload shows different web page content based on
the identification of visitors (as either potential victims or
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Fig. 1: Typical operation of client-side cloaking in phishing
websites.

bots). Consequently, cloaked phishing websites may have a
longer life span than ones without: by delaying or avoiding
detection, the attackers who launch these websites maximize
their return-on-investment [43]. Because client-side evasion
techniques enable complex interactions between potential vic-
tims and phishing websites, they may be more effective in
hampering automated detection than traditional server-side
cloaking, and, thus, pose a threat to potential victim users.

B. Challenges in Analyzing Client-side Cloaking

Unlike server-side code, the client-side code (JavaScript) of
websites can trivially be obtained through crawling. Therefore,
malicious websites typically leverage code obfuscation meth-
ods such as string array encoding, object key transformation,
dead code injection, and even full encryption [17, 31]. Attack-
ers also can dynamically generate and execute code (e.g., using
eval) to hide malicious behaviors. Such obfuscation methods
pose a challenge for static code analysis approaches, which are
otherwise favored for their efficiency.

Other types of obfuscation also seek to prevent dynamic
analysis approaches from detecting malicious behaviors. Ma-
licious JavaScript code often targets specific versions of web
browsers and operating systems by fingerprinting them [18].
Such attacks are difficult to discover because detection systems
require extensive resources to reveal the conditions that trigger
attacks [17]. Besides, external and inter-block dependencies,
which require recording states in different execution paths, can
be obstacles that thwart the analysis of JavaScript code [34].
Furthermore, scripts may execute in an event-driven manner
to necessitate external triggers to initiate malicious behavior
while otherwise appearing benign [34].

All of the aforementioned anti-analysis methods can po-
tentially be leveraged by phishing websites’ implementations
of client-side cloaking techniques. Given the difficulty of
analyzing such cloaking, the security community struggles to
thoroughly understand the impact and prevalence of phish-
ers’ tactics, and, thus, may fail to appropriately mitigate
them. When we consider the scale on which phishing attacks
occur [9], the consequences of the corresponding gaps in
detection and mitigation can be significant.

Cloaking Category Cloaking type Requirement

User Interaction
Pop-up Click on alert/notification window

Mouse Detection Move mouse over browser
Click Through Pass Click Through on browser

Fingerprinting
Cookie Check document.cookie
Referrer Check document.referrer

User-Agent Check navigator.userAgent

Bot Behavior
Timing Render webpage after certain time

using sleep()/Date.getTime()

Randomization Show content randomly using
Math.random()

TABLE II: Summary of the client-side cloaking technique
types identified in this work.

III. OVERVIEW

Client-side cloaking techniques can help phishing websites
evade detection by anti-phishing entities [43], yet prior studies
have not investigated them in detail, despite evidence that
sophisticated phishing websites—such as those with client-
side cloaking—are responsible for a majority of real-world
damage due to phishing [46].

We discover eight different types of JavaScript cloaking
techniques across three high-level categories: User Interaction,
Fingerprinting, and Bot Behavior (summarized in Table II).
Cloaking techniques in the User Interaction category show
phishing content only if visitors interact with a phishing
website (e.g., by moving the mouse or clicking a specific
button). Phishing websites with Fingerprinting identify visitors
by inspecting the configuration of browsers or web requests.
Finally, phishing websites with Bot Detection identify anti-
phishing crawlers based on factors such as how long the web
page stays open and whether the web request is repeated
after failing initially. We elaborate on each cloaking type
in Section VI-A.

We aim to comprehensively understand and characterize the
landscape of client-side cloaking techniques used by phishing
websites in the wild through an automated methodology for
analyzing them. To this end, we design, implement, and
evaluate CrawlPhish: a framework that automatically detects
and analyzes client-side cloaking within phishing websites.
Figure 2 provides an overview of the CrawlPhish architecture.
CrawlPhish is composed of the following components:

1 Crawling and pre-processing (§IV-A): CrawlPhish first
collects web page source code (along with any external file
inclusions) by visiting live phishing website URLs recently
reported to anti-phishing feeds. We then filter URLs that
cannot be retrieved as well as URLs without any JavaScript
code.

2 Feature extraction (§IV-B): CrawlPhish adapts a state-
of-the-art code analysis method, forced execution [34], to
execute JavaScript regardless of branch conditions, and
extracts all possible execution paths in which evasion
techniques could be implemented. We then derive (1)
visual features of the rendered web pages, by means of
screenshots, and (2) code structure features such as web
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Fig. 2: CrawlPhish architecture.

API calls, event listeners, and the Abstract Syntax Tree
(AST) for each path.

3 Cloaking detection (§IV-C): CrawlPhish analyzes the vi-
sual features corresponding to each execution path to detect
if cloaking exists, and it stores the corresponding code
structure features of every such path.

4 Cloaking categorization (§IV-D): Using the code struc-
ture features, CrawlPhish categorizes the cloaking tech-
niques used by phishing websites based on their semantics.

After presenting CrawlPhish and the resulting analysis of
cloaking techniques, we evaluate our approach, as described
below, to ensure that our methodology can help improve user
security by enhancing the ability of anti-phishing systems to
detect and bypass attackers’ evasion techniques.
§V. Detection of cloaked phishing websites: We first eval-

uate the effectiveness of CrawlPhish on the dataset of
112,005 phishing websites that we crawled. We show that
CrawlPhish can detect the presence of client-side cloaking
with very low false-negative and false-positive rates (1.75%
and 1.45%, respectively).

§VI. Cloaking categorization: We measure the prevalence
of client-side cloaking techniques in the wild and char-
acterize eight different types in three high-level categories.
Also, we evaluate CrawlPhish to show that it can reliably
categorize the semantics of each cloaking technique. We
compare the findings from our crawled dataset with an
additional dataset of 100,000 phishing websites. Moreover,
we analyze the source code that CrawlPhish collected
to identify and group related cloaking implementations.
Tracking the deployment and evolution of such code can
be indicative of sophisticated phishing kits, which can help
security researchers pinpoint the threat actor and track the
associated attack volume.

§VII. Impact of cloaking techniques: We deploy 150 arti-
ficial phishing websites to empirically demonstrate that
all three categories of evasion can successfully bypass
detection by the anti-phishing backends used in major web
browsers. Separately, we conduct a user study to show that
human users remain likely to interact with cloaked phishing
pages. Through these experiments, we show that client-side
cloaking poses a real-world threat.

Dataset. In our evaluation, we use two different datasets.

(1) APWG Dataset: CrawlPhish collected the source code of
28,973 phishing websites from June to December 2018 and
100,000 websites from May to November 2019 using the Anti-
Phishing Working Group (APWG) URL feed [51].
(2) Public Dataset: Phishing website source code from
September to December 2019 from various well-known
sources, shared publicly by a security researcher [24].
Ethics. We ensured that our experiments did not cause any
disruption to legitimate Internet infrastructure or negatively
impact any human users. Our crawling (Section IV-A) did not
negatively affect any legitimate websites because CrawlPhish
pruned those websites before initiating analysis. The user study
in Section VII-B underwent the IRB review and received
approval. During this study, we did not ask for or acquire any
Personally Identifiable Information (PII) from participants. In
addition, no human users ever saw any of the artificial phishing
websites discussed in Section VII-A, nor were these websites
configured to collect any data that may have been submitted.

IV. CRAWLPHISH DESIGN

The design goal of CrawlPhish is to detect and categorize
client-side cloaking techniques in an automated manner while
overcoming the JavaScript code analysis challenges discussed
in Section II-B.

A. Crawling & Pre-processing

To collect the source code of live phishing websites to detect
and classify client-side evasion methods that are currently
employed in the wild, CrawlPhish first obtains URLs of known
phishing websites in real-time.

In our deployment, CrawlPhish continuously ingested URLs
from the APWG eCrime Exchange database—a curated clear-
inghouse of phishing URLs maintained by various organiza-
tions engaged in anti-phishing. Because this database receives
frequent updates and tracks phishing URLs that target a
diverse range of brands, it is well-suited for phishing website
analysis.1 Note, however, that the inclusion of a URL in the
database does not mean that it was adequately mitigated (e.g.,

1 Although the goal of cloaking is to evade detection by automated anti-
phishing systems, such evasion will often delay detection rather than outright
prevent it. Phishing websites may also be detected by other means (e.g.,
manual review) [46]. Thus, we expected the AWPG database to contain a
representative sampling of any client-side cloaking that might be used in the
wild.



through timely blacklisting) [45]. Hence, websites found to
use sophisticated client-side cloaking still warrant scrutiny.

Next, CrawlPhish downloads source code by visiting each
phishing website URL (shortly after being ingested) us-
ing a programmatically controlled web browser. Specifically,
CrawlPhish stores source code using HAR files [57], which
capture all HTTP requests/responses between our client and
the server, and ensure that all dependencies (such as linked
scripts) are preserved for each website. In case of a failed
request, CrawlPhish switches between different configurations
of IP addresses and user-agents in an effort to circumvent
potential server-side cloaking techniques used by phishing
websites [44]. 4,823 of the 128,973 websites we crawled
(3.74%) showed different response status codes after we
switched request configurations.

Finally, CrawlPhish filters out URLs that contain blank
pages or non-phishing websites. Such websites were either
already taken down [7] or were false-positive detections by
the time of crawling. We found 0.53% of URLs within the
APWG Dataset to be false positives. Therefore, CrawlPhish
excludes data in the following cases:

i. empty websites: servers respond with no content.
ii. error websites: requests for URLs were denied because

the phishing websites were already taken down, or used
server-side cloaking which we could not bypass.

iii. non-phishing websites: mistakenly reported URLs, which
CrawlPhish filters based on a manually curated whitelist
of reputable domains.

B. Feature Extraction

Cloaked content detection. Client-side cloaking techniques
used in phishing websites can be more diverse than server-
side cloaking because they can not only fingerprint visitors
based on configurations of browsers and systems, but may also
require visitors to interact with websites. To effectively detect
client-side cloaking techniques, CrawlPhish adapts J-Force: a
forced execution framework implemented in the WebKitGTK+
browser that executes JavaScript code along all possible paths,
crash-free, regardless of the possible branch conditions, event
handlers, and exceptions [34]. We modified J-Force to whitelist
(avoid force-executing) well-known JavaScript libraries, such
as Google Analytics or jQuery, to expedite execution by
ignoring the benign content changes that such libraries could
introduce.
Execution time limit. We select a time limit for each invoca-
tion of forced execution by CrawlPhish to avoid failures due
to long-running scrips (e.g., due to heavy branching or long-
running loops). Note that this time limit is in addition to other
anti-timeout features implemented in the forced execution
framework, as discussed in Section IX-B.

As a starting point, we chose an execution limit of 300
seconds. We conducted an experiment by force-executing
2,000 randomly selected phishing websites in our crawled
dataset to record the execution time. We found that 1.75%
of phishing websites contained JavaScript code that exceeded
the time limit. Execution finished as quickly as 12.56 seconds,

the median execution time was 13.82 seconds, the average
execution time was 29.96 seconds, and the standard deviation
was 54.89 seconds. Based on this experiment, we chose a
final execution limit of 195 seconds (three standard deviations
above the mean) so that CrawlPhish could efficiently analyze
the majority of phishing websites.
Feature extraction. To facilitate detection of (the existence
of) cloaking and categorization of the corresponding cloaking
type, CrawlPhish extracts both visual and code structure
features from each phishing website. Each phishing website’s
visual features consist of the set of all web page screenshots
(in our implementation, at a resolution of 2,495×1,576 pixels)
captured after every possible execution path is explored by
forced execution. In our dataset, each website generated 46.3
screenshots on average. CrawlPhish compares the screenshots
of each execution path within one website against the original
screenshot to detect if cloaking exists, because the presence of
cloaking will result in significant visual layout changes [59].
The code structure features include web API calls, web event
listeners, and ASTs, which can characterize different types of
cloaking techniques and reveal how the cloaking techniques
are implemented. Using forced execution, CrawlPhish can
reveal and extract the web APIs and events contained in every
code block, even if the code is obfuscated. CrawlPhish can
then classify the cloaking types in a website using the code
structure features.
Code structure features used. According to preliminary
analysis which we conducted by manually inspecting cloaking
techniques in a sampling of phishing websites in our dataset,
different client-side cloaking techniques each have substan-
tially different features. For example, a cloaking technique that
checks mouse movement waits for an onmousemove event,
then performs DOM substitution or redirection. However, a
cloaking technique that checks screen size would first access
the screen.height property. Therefore, as CrawlPhish
executes a code block via forced execution, it records the web
APIs and events that are invoked in the code block.

In addition, we found that the same semantic types of client-
side cloaking techniques have many different implementations.
CrawlPhish distinguishes between different implementations
of each type of cloaking technique by comparing ASTs.
Even though JavaScript code is often obfuscated, the AST
feature is still useful because most phishing websites are
deployed using phishing kits, so the corresponding websites,
with the same phishing kit origin, share the same source code
structure [54]. Furthermore, by computing the AST similarity,
we can trace the origin of the cloaking technique by finding
similar implementations earlier in phishing pages.

C. Cloaking Detection

CrawlPhish examines the visual similarity between force-
executed screenshots and a screenshot of the website rendered
in an unmodified version of WebKitGTK+ (i.e., as would
be shown during a normal browser visit) to detect if cloak-
ing exists. Because phishers implement JavaScript cloaking
techniques to evade detection by anti-phishing systems, they



remove suspicious attributes in websites (e.g., login forms)
or outright redirect to a benign website. Therefore, the visual
content shown when the cloaking condition is not satisfied will
differ significantly from that of the malicious page.

For example, consider a phishing website that asks visitors
to click on a button in a pop-up window prior to showing
the phishing content. After forced execution, two different
execution paths result in two different screenshots: one as
an initial benign-looking page (Figure 4a), and the other
with phishing content (Figure 4b). Therefore, we consider a
phishing website as cloaked if any of the screenshots taken
during forced execution noticeably differ from the original one.

CrawlPhish can also reveal phishing content hidden behind
multiple layers of cloaking. Consider a phishing website with
a cloaking technique that (1) detects mouse movement and (2)
checks the referrer such that the malicious content will appear
only if both requirements are met. CrawlPhish will explore
the execution path that shows the malicious content by force-
executing it, regardless of the branching conditions. Therefore,
after each screenshot is compared with the screenshot of the
original page, CrawlPhish determines that a cloaking technique
exists because one of the screenshots will differ.
Removal of blank pages after forced execution. Screenshots
of pages rendered by force-executed paths may be blank,
which can be caused by (1) negative branches from cloaking
techniques (such as mouse movement detection) that require
user input or (2) execution paths that take longer to finish
than the execution time limit. In the latter case, CrawlPhish
can mislabel a website as cloaked if an initial screenshot is
compared to an empty page caused by unfinished execution
paths. For example, phishers may trigger an infinite loop if
they identify that a visit is from an anti-phishing system.
In this case, CrawlPhish cannot finish forced execution and
hence the screenshot remains empty. Thus, a current limitation
of CrawlPhish is that it cannot detect cloaked websites with
very long execution times, which we explain in Section IX.
However, according to our evaluation, this situation does not
happen often: only in 1.75% of the websites we considered.
Detection algorithm. To perform visual similarity checks
between the screenshots, we implement the pHash algo-
rithm [42], which compares visual similarity with robustness
and good discrimination. We calculate pHash scores between
the original screenshot and those captured after each path
finishes execution.

score = pHash(Soriginal, Si), i ∈ [1, 2, ..., n] (1)

In Formula 1, S represents each screenshot and n is the
number of screenshots captured from forced execution. We
consider two screenshots to be similar (no cloaking) if the
pHash score is less than a threshold (5.0) that we set based
on preliminary testing results on 1,000 phishing websites.
Differing screenshots will have a score of 5.0 or greater.
Figure 3a shows the ROC curve for selecting the visual
similarity threshold. We selected the threshold that provides a
92.00% true-positive rate with a 6.77% false-positive rate. We
note that our evaluation in Section V shows that CrawlPhish
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Fig. 3: ROC curves to select thresholds for cloaking detection
and cloaking type categorization.

exhibited higher detection accuracy (98.25%) with a lower
false-positive rate of 1.45% than what was indicated by the
threshold in the ROC curve.

D. Cloaking Categorization

Once CrawlPhish detects the presence of cloaking on a web
page, categorization of the specific type of cloaking allows us
to measure and understand the prevalence of different high-
level client-side cloaking techniques used by phishers. To
facilitate this categorization, CrawlPhish maintains a cloaking
technique database that contains the code structure features for
each instance of cloaking, annotated with the corresponding
cloaking semantics. Using the database, CrawlPhish can not
only identify known cloaking types, but also provide detailed
information about emerging cloaking techniques.
Initial database. We first obtained 1,000 cloaked phishing
websites (true positives), for which we used CrawlPhish to
determine the existence of client-side cloaking. Then, we
manually examined the source code of the phishing websites to
label the corresponding cloaking techniques. We also recorded
code structure features as ground truth.

For example, we labeled one type of cloaking tech-
nique as Mouse Detection if the recorded code features
have the onmousemove event and use the window.
location.href API. Over time, as CrawlPhish executes, if
the presence of cloaking is detected on a website but the code
features do not sufficiently closely match any of the records
in the database, the website is flagged for manual review such
that the missing features (and, potentially, new cloaking types)
can be populated. Otherwise, the website is automatically
labeled with the corresponding semantic cloaking type. Within
the dataset we crawled, manual effort was rarely needed after
we populated the initial database. Thus, this requirement does
not impede the automated operation of our framework.
Categorization algorithm. CrawlPhish employs the Ham-
ming Distance (HD) algorithm [26] to compute the similarity
of the API calls and web events. To this end, we use an
array data structure with one position for each of the 4,012
types of web API calls or events as defined by the Mozilla



MDN [3, 20], which documents currently available web APIs.
At each position in the array, we store the number of corre-
sponding API calls or events as observed by CrawlPhish. We
then convert this array to a fixed-length string (e.g., string[0]
is the number of ActiveXObject in the code block and
string[1] stores the amount of Date API calls) so that we can
apply the HD algorithm. Thus, the result of the HD algorithm
on a pair of strings represents the similarity of web APIs and
events between two code blocks. Lower HD values indicate
higher similarity.

We also leverage JSInspect [4] to find structurally similar
code snippets based on the AST. This will identify code
with a similar structure based on the AST node types (e.g.,
BlockStatement, VariableDeclaration, and ObjectExpression).
We combine these approaches to overcome limitations of code
similarity checkers based solely on either ASTs or API calls.
Consequently, by comparing the code structure similarity of
all suspicious code blocks against records in the database, all
known cloaking types can be identified in one website (even if
there are multiple types). If the features of a suspicious code
block are not sufficiently similar to any record in the database,
we will manually examine it, label the cloaking type, and then
add it to the database, which is the only process that requires
manual effort in the CrawlPhish framework.

Similar to the visual similarity check, we empirically set a
threshold for the code similarity check based on preliminary
manual analysis of 1,000 cloaked phishing websites. We
consider only two categories to find a threshold: correctly
labeled cloaking types and mislabeled cloaking types. Per
Figure 3b, we selected a code structure threshold with a true-
positive rate of 95.83% and a false-positive rate of 0.79%.
When CrawlPhish compares the code structure features of
a new phishing website to ones in our database, the AST
similarity score must be greater than 0.74 and the Hamming
Distance of web APIs and events must be within 34 for a new
website to be marked with a known type of cloaking technique.

V. EVALUATION:
DETECTION OF CLOAKED PHISHING WEBSITES

In this section, we evaluate the client-side cloaking detection
accuracy of CrawlPhish. In this experiment, we first randomly
sampled and manually labeled 2,000 phishing websites that
did not contain JavaScript cloaking techniques as well as 2,000
phishing websites with various types of client-side cloaking.
We then ran CrawlPhish to detect if client-side cloaking exists.
Finally, we compared the automated cloaking detection results
against our manually labeled ground truth dataset to calculate
the detection accuracy.

Table III shows the confusion matrix of CrawlPhish’s
detections. Within the 4,000 phishing websites, CrawlPhish
correctly detected 1,965 phishing websites as cloaked and
1,971 as uncloaked, with a false-negative rate of 1.75% (35)
and a false-positive rate of 1.45% (29). Note that unlike a
general phishing detection tool that should prioritize false
positives over false negatives [61], the client-side cloaking
detection component in CrawlPhish does not critically need

Crawled Phishing
Websites From APWG

Analyzed
Cloaked Non-cloaked

Cloaked TP FN

Actual 1,965 98.25% 35 1.75%

Non-cloaked FP TN
29 1.45% 1,971 98.55%

TABLE III: Accuracy of cloaking detection by CrawlPhish.

to do so, because the goal of our detection is to study the
nature of client-side cloaking, rather than to detect a phishing
attack. If CrawlPhish trades higher false negatives for lower
or even zero false positives, the study might be less complete
because we might miss many relevant instances of cloaking.
Therefore, the detection of CrawlPhish should balance false
positives with false negatives.

Each of the 29 false-positive cases was caused by one of two
errors. The first error was due to the rending overhead of the
unmodified browser which loaded the original phishing page.
WebKitGTK+, the web browser we used in the CrawlPhish
framework, failed to render the original websites within an
allotted time limit due to a large number of CSS and JavaScript
files included by the website. As a result, the original screen-
shot of each website was blank, but the screenshots after
forced execution were not blank, so CrawlPhish mislabeled
the corresponding websites as cloaked because the screenshots
differed before and after forced execution. The second error
was caused by inaccuracies in our image similarity checks.
The image similarity check module erroneously distinguished
between screenshots of identical pages due to slight variations
in the page layout generated by the browser with and without
forced execution.

In terms of the false negatives, we found that 32 out of the
35 stemmed from a long execution time of cloaked phishing
websites (similar to the first reason for false positives). Forced
executed screenshots are not taken if an execution path takes
too long to finish execution. We used a 195-second execution
time window for each execution path. However, the paths
that CrawlPhish does not execute due to a timeout may
contain cloaking technique implementations. Without those
screenshots, CrawlPhish cannot detect the cloaking technique,
so it mislabels the corresponding website as uncloaked.

In three rare cases, real phishing websites appeared nearly
blank due to low page contrast. For example, if phishing
websites have a white background with light text, CrawlPhish
would not distinguish between the corresponding screenshot
and a blank one. We manually examined these cases and found
that CSS inclusions were missing from those websites (i.e.,
they could not be retrieved by our crawler).

Client-side cloaking occurrence statistics. Within our dataset
of 112,005 phishing websites, CrawlPhish found that 35,067
(31.31%) phishing websites implement client-side cloaking
techniques in total: 23.32% (6,024) in 2018 and 33.70%
(29,043) in 2019. We note that cloaking implementations
in phishing grew significantly in 2019. We hypothesize that



(a) Initial appearance. (b) Force-executed appearance.

Fig. 4: Initial and force-executed appearance of a phishing
website with Pop-up cloaking.

phishers are either leveraging such cloaking because it in-
creases their profitability or because improving detection sys-
tems make advanced evasion necessary, or both.

VI. EVALUATION: CLOAKING CATEGORIZATION

In this section, we elaborate on the eight types of client-side
cloaking techniques detected by CrawlPhish (as previously
introduced in Table II). We also evaluate the accuracy of
CrawlPhish’s semantic cloaking categorization, track trends in
the deployment and evolution of different implementations of
these cloaking techniques, and analyze how frequently they
are used.

A. Categorization of Cloaking Types

User Interaction: Pop-up. With this technique, phishing
content remains hidden until a button in a pop-up window is
clicked. Specifically, JavaScript code listens for an onclick
event to evade anti-phishing bots. Figure 4 shows an example
of a phishing website that implements this technique. The
website in Figure 4a initially shows an alert window to an
anti-phishing bot or a real user. Thus, this phishing website
seeks to evade detection by anti-phishing bots because no
phishing content or typical attributes (such as a login form
or logos of a legitimate organization) are found on the page.
However, CrawlPhish reveals the phishing content hidden
behind the popup window as shown in Figure 4b.

Figure 5 shows a more advanced version of the pop-up
cloaking techniques that CrawlPhish detected. Because an
alert window can easily be closed through common browser
automation frameworks such as Selenium [28] or Katalon [5],
some phishers instead use the Web Notification API [58].
We observed that due to technical limitations, top automation
frameworks [8] do not currently support interaction with
web notifications. These automated browsers opt to disable
the notification window to avoid such interactions. Phishers,
however, only allow visitors who actually click the “Allow”
button to access the phishing content. Therefore, because the
phishing website will not show any phishing content until a
visitor clicks the “Allow” button in the notification window, it
will evade detection. Phishers use a deceptive web page that
asks visitors to click the button on the notification window, as
shown in Figure 5. As an added benefit to attackers, by using
a notification window, cloaked phishing websites could also
directly send spam to visitors through their browsers (we do

Fig. 5: A phishing website with the evolved Pop-up (Notifica-
tion) cloaking technique, in which the web page directs human
visitors to click on the “Allow” button by showing an arrow.

not evaluate the extent of such abuse). Through this, we show
that criminals are using cutting-edge browser features to evade
existing detection systems.
User Interaction: Mouse Detection. This cloaking type seeks
to identify whether a website visitor is a person or an
anti-phishing bot by waiting for mouse movement before
displaying the phishing content. Specifically, the cloaking
code listens for the onmousemove, onmouseenter, or
onmouseleave events. This technique is used frequently by
phishers, and accounts for 16.53% of all cloaking technique
implementations in Table V, because most people have a habit
of moving the mouse while a website is rendering in the
browser [50].
User Interaction: Click Through. Some phishing websites
require visitors to click on a specific location on the page
before displaying phishing content [60]. Simple variants of this
cloaking technique require visitors to click on a button on the
page and are, thus, similar to alert cloaking. However, more
sophisticated variants display fake CAPTCHAs that closely
mimic the look and feel of Google’s reCAPTCHA [56]. Given
the common use of reCAPTCHA by legitimate websites,
phishing websites with fake CAPTCHAs make it difficult for
potential victims to identify that they are fake. If anti-phishing
systems cannot access phishing content because of the Click
Through technique, they may fail to mark the websites as
phishing.
Bot Behavior: Timing. Some phishing websites show
phishing content only at a certain time, or deliberately
make rendering slow by using the setTimeout() or
Date.getTime() APIs. If phishing websites take a longer
time to render than thresholds set by detection systems, such
websites can evade detection. Actual visitors, however, might
wait for the completion of web page rendering [19].
Bot Behavior: Randomization. Some phishers try to evade
detection by using a non-deterministic mechanism: such phish-
ing websites generate a random number before the page is
rendered, and only show phishing content if a certain threshold
is met. Anti-phishing crawlers or human inspectors may not
visit the same website again if it initially shows benign content.
Therefore, this technique may appear to be a “dumb” way to



Cloaking Technique Public Dataset APWG Dataset Identical
GroupsUnique

Groups
Top Group Unique

Groups
Top Group Earliest

Impl.
Groups Used
From 2018Category Type Count Percentage Count Percentage

Fingerprinting
Cookie 43 437 15.01% 28 325 7.39% 09/2018 12 14
Referrer 27 156 5.85% 37 92 3.92% 08/2018 21 9

User-Agent 65 563 53.31% 33 181 12.97% 07/2018 24 20

User
Interaction

Pop-up Alert 424 249 3.26% 335 73 1.21% 06/2018 276 127
Notification 29 52 4.22% 17 284 18.67% 11/2018 7 11

Click Through 105 1,541 22.88% 51 1,275 16.45% 10/2018 13 31
Mouse Detection 87 138 6.81% 108 500 8.63% 06/2018 47 37

Bot
Behavior

Randomization 73 42 16.03% 125 58 3.57% 09/2018 62 43
Timing 597 387 7.76% 394 416 5.99% 06/2018 303 197

TABLE IV: Overview of the number of distinct groups of cloaking code implementations in the APWG and Public Datasets.

(a) Benign page shown when
cookies are disabled.

(b) Force-executed version,
which reveals the login form.

Fig. 6: Appearance of a phishing website with the Cookie
cloaking technique.

evade detection by anti-phishing systems. However, its use in
the wild suggests that it may be worthwhile: we suspect that
phishers who use this technique are aware of the conditions
for detection by anti-phishing entities and try to trick anti-
phishing bots with a non-deterministic approach to cloaking.
Fingerprinting: Cookie. Similar to server-side cloaking tech-
niques, client-side cloaking techniques can also check visitors’
request attributes to fingerprint them. Figure 6 illustrates a
phishing website that fingerprints whether a visitor is a person
or an anti-phishing bot by checking if cookies are disabled in
the browser. When cookies are disabled, the phishing websites
will display benign content, as shown in Figure 6a. Some anti-
phishing crawlers disable cookies to avoid being bound to a
single session. However, CrawlPhish detects cloaked phishing
content as shown in Figure 6b. Similarly, this cloaking tech-
nique may also test if the browser cache is enabled [47].
Fingerprinting: Referrer. Phishing websites can check
whether incoming traffic originates from phishers’ lures or
other unwanted sources. Therefore, some phishing websites
display benign content to visitors with a blank Referer [21],
which could indicate that a URL was directly typed in.
Similarly, referrals from search engines or known security
domains can be blocked.
Fingerprinting: User-agent. Some phishing websites seek
to identify anti-phishing crawlers based on their user-agent
strings. The navigator.userAgent property stores in-
formation about the browser and operating system (e.g.,
Mozilla/5.0 (X11; Linux x86 64)). Therefore, anti-phishing
bots such as Googlebot can be blocked as their userAgent
property is a known value.
Combinations of cloaking techniques. Multiple client-side

cloaking techniques are occasionally used together by phishing
websites, as doing so may further increase evasiveness. For
example, CrawlPhish found 503 instances of Click Through
and Referrer used together. Also, we found Timing and Cookie
in 476 cloaked phishing websites.

B. Accuracy of Cloaking Categorization

To evaluate the accuracy of CrawlPhish’s categorization of
cloaking types, we selected the same 2,000 cloaked phishing
websites as in Section V (this set contains all three categories
of client-side cloaking techniques) and manually labeled the
correct cloaking type based on their code structure features.
We, then, sent these websites through the feature extraction
( 2 ) and the cloaking detection ( 3 ) phases of CrawlPhish to
locate the code blocks in which each cloaking technique is
implemented. CrawlPhish checked the code structure feature
similarity as populated over the course of our deployment
( 4 ). As stated in Section IV-D, CrawlPhish compares the
code structure features of all snippets flagged by Step 3 with
the records in the database to discover all possible cloaking
techniques in a given phishing website.

We found that CrawlPhish correctly categorized the cloak-
ing type with 100% accuracy. This high accuracy stems in part
from the manual inspection involved when the code structure
features of the examined snippet do not match any existing
records in the database, as discussed in Section IV-D. Thus,
we conclude that web API calls, web events, and ASTs suffice
for distinguishing between different cloaking types, even when
the underlying implementations vary.

C. Grouping of Implementations

Because phishing kits directly enable the scalability of
phishing attacks and are readily available through underground
markets [41, 53, 54], tracking the deployment and evolution of
kits can help researchers and investigators pinpoint the threat
actor (i.e., a kit author or criminal group) behind a series of
phishing websites and identify the prevalence phishing attacks
attributable to the same author. The web page source code
collected by CrawlPhish is suitable for this purpose because
such source code can be obtained for virtually any phishing
URL—unlike server-side code [44].

By comparing code similarity between JavaScript snippets
used by cloaked phishing websites, over time, we can group
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Fig. 7: CDF of implementation groups for all phishing web-
sites in the APWG Dataset.

related cloaking technique implementations (i.e., implemen-
tations attributable to the same origin) together. Specifically,
we compare the AST similarity among cloaking technique im-
plementation code blocks to find matches using JSInspect [4]
(the same technique we leveraged to check the code structure
similarity). In Table IV, we provide an overview of the number
of implementation groups that we found for each cloaking
technique within the APWG Dataset and the Public Dataset.
In addition, we compare the overlap in groups between the two
datasets, and we determine the earliest date that each technique
was observed.
Implementation groups in the APWG Dataset. We found
that the earliest implementation of each cloaking type was in
2018. Also, we found that 1,128 groups account for 35,067
cloaked phishing websites detected by CrawlPhish. Figure 7
shows the cumulative distribution function (CDF) of unique
implementation groups in the APWG Dataset: 20% of unique
cloaking implementation groups account for 74.65% of all
phishing websites. This shows that a small number of phish-
ing kits is likely responsible for a significant proportion of
sophisticated phishing websites in the wild. We discover that
the Timing cloaking type has the most groups (394) among all
cloaking types. Because this cloaking technique is less popular
according to our findings, we suspect that prominent phishing
kit developers do not deploy it, though individual criminals
may still want to leverage it. Among the largest groups, we
observe that one group of Click Through cloaking accounted
for 16.45% (1,275) of code variants. As many as 18.67% (284)
of the Notification Window occurrences were within a single
group.
Implementation groups in the Public Dataset. We also
compare the cloaking groups within the Public Dataset [24],
which was sourced from OpenPhish [6], PhishTank [49],
PhishStats [48], and other phishing URL archives. Using this
additional dataset, we can validate that the APWG dataset was
representative of the ecosystem and evaluate the existence of
other cloaking techniques that may not have been present in
the APWG dataset. Table IV shows detailed statistics on the
cloaking group distributions between the two datasets. The
number of groups found for each cloaking type from both
datasets is similar. The Timing and Alert cloaking techniques

still have the highest overall number of groups, which matches
the findings from the APWG dataset. The number of groups
for Click Through cloaking, however, increases from 51 to
105. We suspect that different phishers are developing more
phishing kits with this cloaking technique because they realize
that it can effectively evade detection by anti-phishing systems.

In addition, by comparing the AST similarity of imple-
mentation groups between the Public Dataset and the APWG
Dataset, we discover that the same groups of cloaking tech-
nique types exist in both datasets. 11 out of 17 distinct groups
of the Notification cloaking technique in the APWG Dataset
also appear in the Public Dataset. Additionally, the Alert and
Timing cloaking techniques have the most identical groups
between the two datasets. This result indicates that phishing
kits leveraging client-site cloaking techniques are widely used.
Evolution of cloaking groups over time. Because we crawled
phishing data in both 2018 and 2019 from APWG feed, this
dataset enables us to trace the origin of each cloaking type. The
Timing, Alert, and Mouse Detection cloaking techniques were
first used in phishing websites from June 2018 in our dataset.
The (more advanced) Notification technique first appeared
in November 2018. The early occurrence of these evasion
methods reminds us that phishers are trying to stay one step
ahead of the anti-phishing ecosystem. While researchers and
anti-phishing entities were working on mitigations against
server-side cloaking techniques [30, 44], those attackers had
already turned their focus toward implementing client-side
evasion methods. We suspect that those client-side cloaking
techniques may have already been employed well before June
2018 [30, 34] (the date we started crawling).

We also observe the evolution of cloaking techniques from
the perspective of obfuscation. From our crawling process,
we found that the code obfuscation rate on phishing websites
increased from 20.79% in 2018 to 24.04% in 2019. For
example, for the Pop-up cloaking technique, the earliest vari-
ant from June 2018 was not obfuscated. Gradually, phishers
started to obfuscate their cloaking technique implementations:
in October 2018, they added an encoding algorithm, while
the AST structure remained highly similar to unobfuscated
implementations. Later, phishers started to symmetrically en-
crypt client-side cloaking techniques (e.g., by using AES) and
included decryption keys only as request parameters. In such
cases, the AST of the same cloaking technique would differ
from an existing group, so we place them in a new group.
However, with CrawlPhish, we still find similar web API
calls, so we consider this group to be an evolution of a prior
group (its origin). From this finding, we gain the intuition that
cybercriminals are improving client-side cloaking techniques
in phishing to make the latest implementations more difficult
to analyze.

D. Trends in Cloaking Usage

Table V shows the prevalence of each client-side cloaking
technique type that CrawlPhish detected. Note that the sum
of each cloaking technique’s occurrence may exceed 100%
because some phishing websites implement multiple cloaking



Cloaking Technique 2018 2019 Total Share

Category Type Count
(%)

Count
(%)

Count
(%) Count (%)

Fingerprinting
Cookie 1,295

(21.50%)
6,842

(23.56%)
8,137

(23.20%)

4,395 (12.53%)
Referrer 2,346 (6.69%)

User-Agent 1,396 (3.98%)

User
Interaction

Pop-up Alert
2,416

(40.11%)
17,782

(61.23%)
20,198

(57.60%)

6,027 (17.19%)
Notification 1,521 (4.34%)

Click Through 7,753 (22.11%)
Mouse Detection 5,797 (16.53%)

Bot
Behavior

Randomization 2,427
(40.29%)

6,141
(21.14%)

8,568
(24.43%)

1,623 (4.63%)
Timing 6,945 (19.80%)

Total Cloaking Implementations 6,138 30,765 36,903 -

TABLE V: Cloaking technique types in the APWG Dataset,
as detected by CrawlPhish.

Cloaking Technique Total Share
Category Type Count Percentage Count Percentage

Fingerprinting
Cookie

6,633 24.28%
2,912 9.87%

Referrer 2,665 9.03%
User-Agent 1,056 3.58%

User
Interaction

Pop-up Alert

17,634 64.55%

7,641 25.89%
Notification 1,233 4.18%

Click Through 6,735 22.82%
Mouse Detection 2,025 6.86%

Bot
Behavior

Randomization 5,294 19.38% 262 0.89%
Timing 4,987 16.90%

Total Cloaking Implementations 29,561 - - -

TABLE VI: Cloaking technique types in the Public Dataset
(September to December 2019), as detected by CrawlPhish.

techniques. In the table, the percentage under the “2018”,
“2019”, and “Total” columns represents the share of each
category of JavaScript cloaking technique implementation in
the respective time period. The percentage under the Share
column refers to the percentage of each type of cloaking
technique in all the cloaked phishing websites we detected.

We categorize the cloaking types in phishing websites from
both the APWG Dataset and the Public Dataset. As shown
in Table V, the User Interaction cloaking category has the
most implementations among phishing websites in the APWG
Dataset. In 2018, 2,416 phishing websites (40.11%) leveraged
cloaking within the User Interaction category, while in 2019,
the usage ratio of User Interaction cloaking grew to 61.23%.
The usage ratio of cloaking techniques in the Fingerprinting
category over two years is almost the same. Within the Bot
Behavior category, the usage ratio dropped significantly, from
40.29% to 21.14%. We find that phishing websites rely more
on cloaking techniques in the User Interaction category than
the others. We believe that this is because it is more difficult for
anti-phishing crawlers to impersonate human behaviors than to
bypass other types of cloaking.

Table VI demonstrates the usage of each cloaking type
CrawlPhish detected from the Public Dataset. Just as we ob-
served from the 2019 portion of the APWG Dataset, the User
Interaction category was also the most frequently implemented
in the Public Dataset.
Brand distribution. Among the 6,024 cloaked phishing sites
in 2018, LinkedIn and PayPal were the most frequently
impersonated brands, as shown in Table VII. In 2019, the
distribution changed: Apple and Bank of America phishing

2018
Targeted Brand Count Share

LinkedIn 2,317 38.46%
PayPal 1,104 18.33%
Microsoft 646 10.72%
Bank of America 309 5.13%
Apple 153 2.54%

2019
Targeted Brand Count Share

Apple 6,298 21.69%
Bank of America 3,572 12.30%
Facebook 2,230 7.68%
PayPal 1,841 6.34%
Microsoft 987 3.40%

TABLE VII: Top brands targeted by cloaked phishing websites
in the APWG Dataset.

websites were the most prevalent. Overall, four of the top five
brands in 2018 were also in the top five in 2019. Nevertheless,
because of changes within the phishing landscape between the
two years, our findings regarding the relative distribution of
cloaking phishing websites may be skewed.

VII. EVALUATION: IMPACT OF CLOAKING TECHNIQUES

We have, thus far, shown that phishing websites make ex-
tensive use of client-side cloaking techniques. To demonstrate
that this cloaking represents a significant threat to users, we
deployed two experiments to verify that these techniques can
truly evade detection by anti-phishing systems, and that they
generally do not discourage victim visits—the two key factors
to increasing attackers’ return-on-investment.

A. Effectiveness Against Anti-Phishing Entities

We evaluate how effective client-side cloaking techniques
are against real-world anti-phishing systems. Using a testbed
for empirically measuring anti-phishing blacklists [43], we first
deployed 150 carefully-controlled artificial PayPal-branded
phishing websites using new and previously unseen domain
names: 50 for each of the top three User Interaction cloaking
types we found in the wild (Notification, Click Through
with a fake CAPTCHA, and Mouse Detection). We then
simultaneously reported the URLs to key anti-phishing entities
across the ecosystem (Google Safe Browsing, PhishTank,
Netcraft, APWG, PayPal, and US CERT [44]) to evaluate if
the ecosystem can collectively detect our cloaked websites.
Lastly, we monitored the detection status (i.e., blacklisting) of
our websites in major web browsers (Google Chrome, Opera,
and Microsoft Edge, each powered by different detection
backends) over seven days.

At the conclusion of these experiments, we found that none
of our phishing websites were blacklisted in any browser, with
the exception of Click Through websites, 21 (42%) of which
were blocked in Microsoft Edge a median of 3 hours after
we reported them. The detection occurred because Microsoft
SmartScreen classified the obfuscation in the JavaScript source
code as malware, not because it was capable of bypassing
the cloaking technique itself. The fact that so many of our
websites remained unmitigated after a seven-day period shows
that client-side evasion methods are indeed effective at evading
detection by modern anti-phishing systems.

Manual inspection is used by some anti-phishing enti-
ties [23]. Recurring suspicious websites that cannot be detected
by automated systems should go to manual inspection for
further analysis. With specialists’ inspection, any malicious



Mouse
Detection

Click
Through

Notification
Window

Count (%) Count (%) Count (%)

Can See 879 (100.00%) 859 (97.72%) 374 (42.55%)
Cannot See 0 (0.00%) 20 (2.28%) 505 (57.45%)

TABLE VIII: Experimental results on the effect of cloaking
techniques on users’ ability to see phishing content.

websites therein should be labeled as phishing and be black-
listed to protect users. Our observations, however, imply that
our test phishing websites may have simply been classified
as benign by anti-phishing systems and never sent for manual
review. We believe that this is a clear limitation of current anti-
phishing mitigations. Therefore, it is important for the whole
anti-phishing ecosystem to understand the nature and preva-
lence of client-side cloaking techniques used by sophisticated
phishing websites, especially when we consider the growth of
such websites [46].

B. Hampering Victim User Traffic

To verify that client-side cloaking techniques in the User
Interaction category do not significantly prevent users from
being exposed to phishing content on cloaked phishing web-
sites, we conducted an IRB-approved user study through
Amazon Mechanical Turk [2]. Using a free hosting provider,
we generated three websites: one with each of the same
three types of cloaking as considered in the previous section
(Notification, Click Through with a fake CAPTCHA, and
Mouse Detection). Rather than hiding phishing content behind
the cloaking, however, we simply hid the text “Hello World”.
By default, a blank page would be shown. We then hired
1,000 workers in Amazon Mechanical Turk and requested
them to report what they saw after visiting each of the
three websites [1]. We choose these three cloaking techniques
because they are unique to client-side (rather than server-side)
cloaking implementations, and because the other techniques
have been tested in a server-side context [43].

Table VIII shows the detailed experimental results. 121 of
the 1,000 workers could not view our phishing websites due
to a technical problem: their browsers automatically added
“www” in front of the sub-domains in our URLs, which
may occur in older versions of web browsers [14]. Thus, the
responses of 879 workers were suitable for analysis.

For the Mouse Movement cloaking technique, 100% of the
workers saw the “Hello World” text, and thus would have also
seen phishing content had they visited a malicious website.
For the Click Through websites, 97.72% saw the text, which
shows that this cloaking technique is also effective against
users. However, only 42.55% of the users saw the text on
websites with the Notification Window cloaking technique.
Nearly all users who did not see the text (94.94%) opted to
deny notifications; the rest had incompatible browsers.

Although two of the cloaking techniques did not signifi-
cantly prevent users from viewing the content, we found that
the Notification Window cloaking technique has a negative

impact on phishing success rates against potential victims.
However, had these users been successfully deceived by a
phishing lure (e.g., one that conveys a sense of urgency) prior
to visiting the page, we believe that they would have been more
likely to allow notifications [55]. Moreover, given the fact that
websites with this cloaking technique were not detectable by
the anti-phishing ecosystem (as we showed in Section VII),
we still believe that this technique remains viable overall. In
fact, the website shown in Figure 5 was still online in January
2020 even though we first observed the phishing URL in May
2019.

Consequently, we conclude that client-side cloaking tech-
niques in the User Interaction category enable phishing web-
sites to maintain profitability through a much longer life span,
generally without discouraging victim visits, which in turn
allows phishers to harm more users.

C. Responsible Disclosure

Once we established that the cloaking techniques discovered
by CrawlPhish were capable of evading anti-phishing systems
while remaining effective against human victims, we disclosed
our findings, and the corresponding JavaScript code for each
technique tested, to the major anti-phishing blacklist operators:
Google, Microsoft, and Opera. All companies acknowledged
receipt of our disclosure. Google followed up by requesting
more information on the semantics and prevalence of the
cloaking techniques, and concurred with our finding that
such techniques could potentially bypass detection by current
automated anti-phishing systems.

VIII. COUNTERING CLIENT-SIDE CLOAKING TECHNIQUES

As we have observed, phishers make extensive use of
sophisticated evasion techniques in their phishing attacks.
The unique feature of client-side cloaking techniques is to
require visitors to interact with the website or browser, such
as through a button click or mouse movement. Phishers adopt
such strategies because they believe that their victims will
exhibit these behaviors when visiting a website [50]. If the
website is in the process of rendering and shows a blank
page, most people tend to move their mouse subconsciously.
Similarly, out of habit, users will click a button from a pop-
up or notification window to make web page content appear.
We expect that phishers’ degree of sophistication will only
continue to grow. Therefore, the ecosystem should ensure
that existing detection and mitigation systems are capable of
adapting to such evasion techniques.

To detect advanced phishing websites with client-side cloak-
ing techniques, anti-phishing crawlers should match the be-
haviors that sophisticated phishing kits expect. Specifically,
crawlers need to impersonate human behaviors such as mouse
movement and button clicks. To examine a given website, anti-
phishing systems can emulate such behaviors using automated
browsers. In addition, as we observed in our analysis, the
Notification Window technique seems to exploit the lack of
support for web notifications by current automated browsers.
Thus, it is important for anti-phishing systems to close this gap



and ensure that the browsers being used for detection support
the same features as those used by potential victims.

Also, CrawlPhish can be directly incorporated into existing
anti-phishing crawlers. With the hidden web page content
revealed by CrawlPhish alongside traditional attributes such
as URLs, we believe that current anti-phishing systems could
identify malicious websites that would otherwise evade de-
tection. Furthermore, by implementing CrawlPhish analysis,
crawlers would be able to more accurately classify and finger-
print new variants of evasion techniques employed phishing
websites, or even discover entirely new types of cloaking.
Such analysis would be particularly helpful in countering
phishing websites that cannot currently be classified with high
confidence.

IX. LIMITATIONS

Even though CrawlPhish uncovered a diverse array of
sophisticated client-side evasion techniques used in the wild,
our findings should be considered alongside certain limitations.

A. CrawlPhish Deployment

Data sources. The CrawlPhish framework is not a phishing
classification system. Rather, it detects and classifies cloaking
within known phishing websites. Thus, as its primary input,
CrawlPhish requires a curated feed of phishing URLs (i.e.,
detected by an existing anti-phishing system, whether manual
or automated). However, our framework could also be adapted
for use on unconfirmed phishing URLs with targeted additions
to the visual similarity check of the framework [63], such
that benign website screenshots could be differentiated from
deceptive ones.
Data collection. Due to infrastructure limitations, we were
only able to crawl live phishing websites over a total of 14
months from June to December 2018 and May to November
2019, with a 4-month gap in between. Differences in brand
distribution between the two years may skew our findings with
respect to the commonality of cloaking techniques. Although
additional crawling would be desirable for a more thorough
longitudinal evaluation, we mitigated this limitation by also
evaluating CrawlPhish on a public dataset of 100,000 phishing
websites from 2019, and by analyzing distinct implementations
of each cloaking technique, as discussed in Section VI-C.

Phishing websites may leverage server-side cloaking with
various degrees of sophistication [44, 46]. Although we sought
to defeat simple IP and geolocation cloaking potentially
implemented by the phishing websites which we crawled,
other techniques may have evaded our crawler, and, thus, the
corresponding phishing website client-side source code would
be absent from our dataset.
Semantic cloaking categorization. When querying the Crawl-
Phish cloaking technique database to determine the type of
cloaking used by a phishing website, we set fixed similarity
thresholds for different classes of cloaking techniques. As a
result, our approach may misclassify evasion code which
combines multiple cloaking techniques, or fail to trigger man-
ual analysis of certain novel cloaking techniques. However, as

shown in our evaluation in Section VI-B, we did not observe
such failures in our analysis.

B. Cloaking Detection

Execution time. Forced execution of a small percentage
(1.75%) of websites in our dataset could not be completed
within a reasonably short time period, and, thus, resulted in
false-negative detections of cloaking. Across our deployment,
we chose a 195-second idle timeout: the maximum period
without a change to the execution path, after which execu-
tion is halted. This timeout allowed 98% of websites (three
standard deviations above the mean) to finish, as determined
by the sampling in Section IV-B. Another limitation of setting
an execution time limit is that some execution paths may be
omitted if the time limit is reached. A future implementation
of CrawlPhish could ensure that all paths of a code snippet
have finished examination by comparing the actual paths in
the script to those that have been force-executed.

We found that the websites which failed to be fully executed
contained long-running code within individual loops. J-Force
seeks to mitigate this limitation by enforcing (by default) a
cutoff of 80,000 iterations for each loop. Although this cutoff
proved insufficient in the aforementioned 1.75% of cases,
given the low false-negative rate, we do not consider it as
a significant issue: fine-tuning the J-Force loop timeout could
be used to further optimize execution times.

Nevertheless, adversaries with knowledge of our analysis
technique could design code to bypass it by introducing a
large number of individual loops ahead of the path which
ultimately displays phishing content. To further overcome this
and other types of deliberate circumvention, additional code
analysis techniques, such as symbolic execution [35], could
be applied in cases in which forced execution fails.
Execution environment. We force-executed phishing web-
sites’ JavaScript using the WebKitGTK+ web browser [34].
Historically, there has been evidence of malicious JavaScript
that only targets a specific web browser (or engine) [32]. Thus,
CrawlPhish may have failed to correctly classify code tar-
geted at other browsers. To overcome this limitation, websites
marked as uncloaked by the current implementation of Crawl-
Phish could be force-executed in additional environments.
Asynchronous content delivery. CrawlPhish does not con-
sider cases where asynchronous web requests (i.e., AJAX)
submit data about the client to the server and so that the
server can determine whether phishing web page content
should be sent back to the client (this equates to server-
side cloaking with the prerequisite of client-side JavaScript
execution, and has been previously studied [43]). Also there
was no evidence in our dataset that client-side cloaking is (yet)
being combined with AJAX and server-side cloaking by phish-
ing websites. However, CrawlPhish could still be enhanced
to automatically analyze the malicious use of asynchronous
requests. For example, during forced execution, CrawlPhish
could mutate the configurations of browser profiles before
the JavaScript code sends an XMLHttpRequest to check
for potential divergent responses. Hence, the corresponding



screenshots after mutation and forced execution would be
different if cloaking techniques were dependent on AJAX, and
CrawlPhish could subsequently identify the existence of such
evasion.

X. RELATED WORK

Studies on phishing and cloaking techniques: Oest et al.
analyzed server-side cloaking techniques within a dataset of
2,313 phishing kits and proposed a taxonomy of five different
types of cloaking [44]. These authors also showed that cloak-
ing techniques, including basic JavaScript cloaking, can effec-
tively bypass detection by anti-phishing blacklists [43]. Based
on an end-to-end analysis of large-scale phishing attacks, Oest
et al. discovered that phishing websites with sophisticated
evasion techniques are prevalent in the wild but the anti-
phishing ecosystem has not effectively mitigated them [46].
In this work, we have presented the first in-depth analysis
of client-side cloaking techniques in the context of phishing
based on a dataset of 112,005 live phishing websites.

Invernizzi et al. studied server-side web cloaking techniques
against search engines, and proposed mechanisms to identify
and bypass such cloaking [30]. CrawlPhish leverages these
methods to overcome server-side cloaking during crawling.
The authors rooted their study in black markets and built a
classifier to detect cloaking techniques implemented on the
server side that returned different content to distinct browsing
clients. This work mainly focused on the mutation of browser
profiles to bypass server-side cloaking techniques to discover
divergent web content. The authors found that 11.7% of
search results were cloaked. The authors considered cloaking
techniques used for Search Engine Optimization (SEO), adver-
tisements, and drive-by download attacks. However, they did
not investigate client-side cloaking techniques implemented
in JavaScript (i.e., that execute in the browser). In contrast,
we discovered diverse client-side cloaking techniques and
analyzed them from the perspective of phishing attacks.
JavaScript analysis techniques: Although a number of static
analysis [18, 32, 65] and dynamic analysis [34, 36] approaches
have been proposed to analyze malicious JavaScript code,
there has been no attempt to automatically extract JavaScript
code semantics for identifying and classifying cloaking tech-
niques. Arrow and Zozzle are static analysis methods to
classify JavaScript malware based on previously discovered
malicious scripts [18, 65]. Revolver tried to detect evasive
JavaScript code through similarity checks against known mali-
cious matters [32]. Rozzle is a multi-execution virtual machine
to explore multiple execution paths in parallel for enhancing
the efficiency of dynamic analysis so that it can be used
in large-scale experiments [36]. J-Force enhanced dynamic
analysis methods to find hidden malicious behaviors by force-
executing JavaScript code, regardless of the conditions, to
explore all possible execution paths in an automated way [34].
Hence, J-Force lends itself well to revealing content hidden
behind JavaScript cloaking code.

Analysis of program semantics similar to ours has been
performed within other contexts. To deal with virtualization-

based obfuscation, Coogan et al. proposed a de-obfuscation
approach that identifies behaviors of malicious programs based
on the flow of values to system calls [15]. BEAGLE assigns
semantics to malware by dynamically monitoring system and
API calls that malware uses to compare versions of malicious
code and quantify their differences—to observe the evolution
of a series of malware [39]. Zhang et al. introduced a semantic-
based static analysis approach to reveal malicious Android
applications’ behaviors regardless of minor implementation
differences [66]. The authors leveraged an API dependency
graph to determine the semantics of the program to classify
malware and identify malware variants.

XI. CONCLUSION

Through the first in-depth analysis of the client-side
JavaScript code used by phishing websites, we have uncovered
a wide gamut of sophisticated evasion techniques used by
attackers. In addition to categorizing such evasion techniques
based on their semantics, our approach enabled us to measure
the prevalence of each technique in the wild. In doing so,
we observed that client-side evasion is becoming increasingly
common.

Client-side JavaScript enables website developers to imple-
ment complex interactions between their websites and visitors.
Thus, evasion techniques implemented in this manner pose a
particular threat to the ecosystem: websites that use them can
effectively discriminate between automated crawler visits and
potential human victims. Unfortunately, client-side evasion
techniques are difficult to analyze due to the dynamic nature
of JavaScript code. CrawlPhish addresses this difficulty in
a scalable manner. In addition to being able to detect and
categorize client-side evasion with high accuracy, our approach
can also track the origin of different implementations.

Given the rise of sophisticated phishing websites in the
wild, we believe that automated analysis systems such as
CrawlPhish are essential to maintaining an understanding of
phishers’ evolving tactics. Methodology such as ours can be
incorporated by the ecosystem to more expeditiously and more
reliably detect sophisticated phishing, which, in turn, can help
prevent users from falling victim to these attacks through the
continuous enhancement of the appropriate mitigations.
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